设为首页收藏本站

弧论坛

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 3000|回复: 0
打印 上一主题 下一主题

物理学家破解了在石墨烯中的粒子消失之谜

[复制链接]

5910

主题

6607

帖子

7167

积分

坛主

Rank: 10Rank: 10Rank: 10

积分
7167
跳转到指定楼层
楼主
发表于 2018-6-24 01:05 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
物理学家破解了在石墨烯中的粒子消失之谜

原创: 二宗主
原理
3天前


石墨烯中,粒子-反粒子湮灭的现象是非常令人困惑的。这个现象被解读为俄歇复合,尽管在实验中持续的被观测到,但长久以来,物理学家认为它是被能量和动量守恒的基本物理定律所禁止的。过去,该俄歇过程的理论解释一直是固体物理学中最大的谜题之一。直到现在,该谜题终于被莫斯科物理技术学院(MIPT)和日本东北大学的科学家破解。

1928年,保罗·狄拉克(Paul Dirac)预言了电子具有一个双胞胎粒子,它们的各个方面都相同,唯有电荷相反。这个粒子被称为正电子,并很快就在实验室中被发现。几年后,科学家发现半导体(比如硅、锗、砷化镓等)中的载流子(指可以自由移动的带有电荷的物质微粒)表现得像电子和正电子。半导体中的这两种载流子被称为电子空穴。它们各自的电荷分别是,它们可以相互复合,或相互湮灭,并释放出能量。电子-空穴复合伴随着光子的发射,为半导体激光器(光电学的重要器件)之所以得以运作提供了工作原理。

在半导体中,光子的发射并不是电子与空穴相遇时发生的唯一可能结果。释放出的能量通常会丧失于相邻原子的热振动中,或者被其它电子接收(如下图)。后者指的是被称为俄歇复合(Auger recombination)的过程,是激光器中活跃的电子-空穴对的主要“杀手”。它以研究这些过程的法国物理学家皮埃尔·俄歇(Pierre Auger)的名字命名。激光工程师努力使电子-空穴复合时的光发射概率最大化,并抑制所有其他过程。


                               
登录/注册后可看大图
○ 石墨烯中电子-空穴复合的两种情景。在辐射复合(左边)中,电子(篮球)和空穴(红球)的相互湮灭会以光子(构成光的粒子)的形式释放能量。在俄歇复合(右边)中,这个能量会被经过的电子获得。俄歇过程会损害半导体激光器,因为它消耗了本可以用来产生激光的能量。而根据能量和动量守恒定律,在半导体中的俄歇过程一直被认为是不可能的。| 图片来源:Elena Khavina/MIPT Press Office

这就是为什么光电子界对MIPT毕业生Victor Ryzhii提出的基于石墨烯的半导体激光器的提议[1]表示热烈欢迎。最初的理论概念认为,石墨烯中的俄歇复合应被能量和动量守恒定律禁止。这些定律在数学上类似于石墨烯中的电子-空穴对和狄拉克原始理论中的电子-正电子对,而我们早已知道,不可能将电子-正电子复合时所伴随的能量转移至第三个粒子中。

然而,在石墨烯中使用热载流子的实验始终得到了不被青睐的结果:石墨烯中的电子和空穴确实以较高的速率复合,这种现象似乎是由于俄歇效应所造成的。此外,电子-空穴对在不到一皮秒(万亿分之一秒)的时间内就会消失,这比现代光电材料要快几百倍。实验表明,基于石墨烯的激光器的实现面临着巨大的障碍。

来自MIPT和东北大学的研究人员发现,虽然在经典守恒定律中,石墨烯中的电子和空穴复合是被禁止的;但在量子世界中,能量-时间不确定性原理却为其提供了可能。根据该原理,守恒定律可能被违反的程度与粒子的平均自由时间呈反比。石墨烯中电子的平均自由时间很短,因为致密的载流子形成了一种强烈相互作用的“混合物”。为了系统地解释粒子能量的不确定性,现代量子力学发展了所谓的非平衡格林函数方法。论文的作者利用这种方法计算了石墨烯中俄歇复合的概率。所得的预测结果与实验数据非常相符。

MIPT光电二维材料实验室的负责人Dmitry Svintsov表示说:“一开始,它看起来像是一个数学脑筋急转弯,而不是一个普通的物理问题。只有当涉及到的三个粒子都朝着同一个方向运动时,普遍接受的守恒定律才允许复合。这个事件的概率就像一个点的体积和一个立方体的体积的比值——它趋近于零。幸运的是,我们很快就决定放弃抽象的数学而选择量子物理学,后者认为粒子不可能有定义明确的能量。这意味着这个事件的概率是有限的甚至能高到足以在实验中被观测到。”

这项研究不仅仅解释了为什么“被禁止的”俄歇过程实际上是可能的。重要的是,它指定了当这种概率足够低时,使基于石墨烯的激光器成为可能的条件。随着粒子和反粒子在有着热载流子的石墨烯实验中迅速消失,激光器可以利用低能量载流子。根据计算,低能量载流子的寿命应该更长。同时,东北大学获得了石墨烯激光生成的第一个实验证据。

值得一提的是,该论文发展出的计算电子-空穴寿命的方法不仅适用于石墨烯,它可用于所有的狄拉克材料(比如石墨烯、拓扑绝缘体等等),即在这些材料中,载流子的行为与狄拉克原始理论中的电子和正电子类似。根据初步计算,碲镉汞量子阱可以使载流子的寿命更长,从而导致更有效的激光生成,因为在这种情况下,俄歇复合的守恒定律会更加严格。

参考来源:
[2]https://mipt.ru/english/news/physicists_solve_the_mystery_of_vanishing_particles_in_graphene


大道至简 万物于弧
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|Archiver|小黑屋|国际弧学研究会    

GMT-7, 2024-11-15 15:07 , Processed in 0.387861 second(s), 22 queries .

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表