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We investigate opportunities and challenges for improving unsupervised machine learning using
four common strategies with a long history in physics: divide-and-conquer, Occam’s Razor, unifi-
cation, and lifelong learning. Instead of using one model to learn everything, we propose a novel
paradigm centered around the learning and manipulation of theories, which parsimoniously predict
both aspects of the future (from past observations) and the domain in which these predictions are
accurate. Specifically, we propose a novel generalized-mean-loss to encourage each theory to spe-
cialize in its comparatively advantageous domain, and a differentiable description length objective
to downweight bad data and “snap” learned theories into simple symbolic formulas. Theories are
stored in a “theory hub”, which continuously unifies learned theories and can propose theories when
encountering new environments. We test our implementation, the “AI Physicist” learning agent, on
a suite of increasingly complex physics environments. From unsupervised observation of trajectories
through worlds involving random combinations of gravity, electromagnetism, harmonic motion and
elastic bounces, our agent typically learns faster and produces mean-squared prediction errors about
a billion times smaller than a standard feedforward neural net of comparable complexity, typically
recovering integer and rational theory parameters exactly. Our agent successfully identifies domains
with different laws of motion also for a nonlinear chaotic double pendulum in a piecewise constant
force field.

I. INTRODUCTION

The ability to predict, analyze and parsimoniously model
observations is not only central to the scientific endeavor,
but also a goal of unsupervised machine learning, which
is a key frontier in artificial intelligence (AI) research
[1]. Despite impressive recent progress with artificial neu-
ral nets, they still get frequently outmatched by human
researchers at such modeling, suffering from two draw-
backs:

1. Different parts of the data are often generated by
different mechanisms in different contexts. A big
model that tries to fit all the data in one environ-
ment may therefore underperform in a new envi-
ronment where some mechanisms are replaced by
new ones, being inflexible and inefficient at combi-
natorial generalization [2].

2. Big models are generally hard to interpret, and may
not reveal succinct and universal knowledge such as
Newton’s law of gravitation that explains only some
aspects of the data. The pursuit of “intelligible in-
telligence” in place of inscrutable black-box neural
nets is important and timely, given the growing in-
terest in AI interpretability from AI users and poli-
cymakers, especially for AI components involved in
decisions and infrastructure where trust is impor-
tant [3–6].

To address these challenges, we will borrow from physics
the core idea of a theory, which parsimoniously pre-
dicts both aspects of the future (from past observa-
tions) and also the domain in which these predictions

Strategy Definition
Divide-and- Learn multiple theories each of which

conquer specializes to fit part of the data very well
Occam’s Avoid overfitting by minimizing description

Razor length, which can include replacing fitted con-
stants by simple integers or fractions.

Unification Try unifying learned theories by introducing
parameters

Lifelong Remember learned solutions and try them
Learning on future problems

TABLE I: AI Physicist strategies tested.

are accurate. This suggests an alternative to the stan-
dard machine-learning paradigm of fitting a single big
model to all the data: instead, learning small theories
one by one, and gradually accumulating and organiz-
ing them. This paradigm suggests the four specific ap-
proaches summarized in Table I, which we combine into a
simple “AI Physicist” learning agent: To find individual
theories from complex observations, we use the divide-
and-conquer strategy with multiple theories and a novel
generalized-mean loss that encourages each theory to spe-
cialize in its own domain by giving larger gradients for
better-performing theories. To find simple theories that
avoid overfitting and generalize well, we use the strat-
egy known as Occam’s Razor, favoring simple theories
that explain a lot, using a computationally efficient ap-
proximation of the minimum-description-length (MDL)
formalism. To unify similar theories found in different
environments, we use the description length for cluster-
ing and then learn a “master theory” for each class of
theories. To accelerate future learning, we use a life-
long-learning strategy where learned theories are stored
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in a theory hub for future use.

Our approach complements other work on automatic
program learning, such as neural program synthe-
sis/induction [7–12] and symbolic program induction [13–
17] and builds on prior machine-learning work on divide-
and-conquer [18–21], network simplification [21–26] and
continuous learning [27–30]. It is often said that babies
are born scientists, and there is arguably evidence for use
of all of these four strategies during childhood develop-
ment as well [12].

The rest of this paper is organized as follows. In Section
II, we introduce the architecture of our “AI Physicist”
learning agent, and the algorithms implementing the four
strategies. We present the results of our numerical exper-
iments using a suite of physics environment benchmarks
in Section III, and discuss our conclusions in Section IV,
delegating supplementary technical details to a series of
appendices.

II. METHODS

Unsupervised learning of regularities in time series can
be viewed as a supervised learning problem of predicting
the future from the past. This paper focuses on the task
of predicting the next state vector yt ∈ Rd in a sequence
from the concatenation xt = (yt−T , ...,yt−1) of the last
T vectors. However, our AI Physicist formalism applies
more generally to learning any function RM 7→ RN from
examples. In the following we first define theory, then in-
troduce a unified AI Physicist architecture implementing
the four aforementioned strategies.

A. Definition of Theory

A theory T is a 2-tuple (f, c), where f is a prediction
function that predicts yt when xt is within the theory’s
domain, and c is a domain sub-classifier which takes xt
as input and outputs a logit of whether xt is inside this
domain. When multiple theories are present, the sub-
classifier c’s outputs are concatenated and fed into a soft-
max function, producing probabilities for which theory is
applicable. Both f and c can be implemented by a neu-
ral net or symbolic formula, and can be set to learnable
during training and fixed during prediction/validation.

This definition draws inspirations from physics theories
(conditional statements), such as “a ball not touching
anything (condition) with vertical velocity and height
(v0, h0) will a time t later have y ≡ (v, h) = (v0−gt, h0 +
v0t−gt2/2) (prediction function)”. For our AI Physicist,
theories constitute its “atoms” of learning, as well as the
building blocks for higher-level manipulations.

Environments

Master theories Symbolic theories

AI Physicist

Theory Hub

TheoriesPropose new 
theories

Occam’s RazorUnification

Divide-and-conquer  

FIG. 1: AI Physicist Architecture

B. AI Physicist Architecture Overview

Figure 1 illustrates the architecture of the AI Physicist
learning agent. At the center is a theory hub which stores
the learned and organized theories. When encounter-
ing a new environment, the agent first inspects the hub
and proposes old theories that help account for parts of
the data as well as randomly initialized new theories for
the rest of the data. All these theories are trained via
our divide-and-conquer strategy, first jointly with our
generalized-mean loss then separately to fine-tune each
theory in its domain (section II C). Successful theories
along with the corresponding data are added to the the-
ory hub.

The theory hub has two organizing strategies: (1) Apply-
ing Occam’s Razor, it snaps the learned theories, in the
form of neural nets, into simpler symbolic formulas (sec-
tion II D). (2) Applying unification, it clusters and uni-
fies the symbolic theories into master theories (section
II E). The symbolic and master theories can be added
back into the theory hub, improving theory proposals for
new environments. The detailed AI Physicist algorithm
is presented in a series of appendices.

C. Divide-and-Conquer

Conventionally, a function f mapping xt 7→ yt is learned
by parameterizing f by some parameter vector θ that is
adjusted to minimize a loss (empirical risk)

L ≡
∑
t

`[f(xt),yt], (1)
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where ` is some non-negative distance function quantify-
ing how far each prediction is from the target, typically
satisfying `(y,y) = 0. In contrast, a physicist observing
an unfamiliar environment does typically not try to pre-
dict everything with one model, instead starting with an
easier question: is there any part or aspect of the world
that can be described? For example, when Galileo fa-
mously tried to model the motion of swinging lamps in
the Pisa cathedral, he completely ignored everything else,
and made no attempts to simultaneously predict the be-
havior of sound waves, light rays, weather, or subatomic
particles. In this spirit, we allow multiple competing the-
ories T = {Ti} = {(fi, ci)}, i = 1, 2, ...M , to specialize in
different domains, with our proposed generalized-mean
loss

Lγ ≡
∑
t

(
1

M

M∑
i=1

`[fi(xt),yt]
γ

)1/γ

(2)

When γ < 0, the loss Lγ will be dominated by whichever
prediction function fi fits each data point best. This dom-
inance is controlled by γ, with Lγ → mini `[fi(xt),yt] in
the limit where γ → −∞. This means that the best way
to minimize Lγ is for each fi to specialize by further im-
proving its accuracy for the data points where it already
outperforms the other theories. The following Theorem
1 formalizes the above intuition, stating that under mild
conditions for the loss function `(·, ·), the generalized-
mean loss gives larger gradient w.r.t. the error |ŷt−yt| for
theories that perform better, so that a gradient-descent
loss minimization encourages specialization.

Theorem 1 Let ŷ
(i)
t ≡ fi(xt) denote the prediction of the

target yt by the function fi, i = 1, 2, ...M . Suppose that
γ < 0 and `(ŷt,yt) = `(|ŷt − yt|) for a monotonically
increasing differentiable function `(u) that vanishes on
[0, u0] for some u0 ≥ 0, with `(u)γ strictly convex for

u > u0. Then if 0 < `(ŷ
(i)
t ,yt) < `(ŷ

(j)
t ,yt), we have∣∣∣∣∣ ∂Lγ∂u

(i)
t

∣∣∣∣∣ >
∣∣∣∣∣ ∂Lγ∂u

(j)
t

∣∣∣∣∣ , (3)

where u
(i)
t ≡ |ŷ

(i)
t − yt|.

Appendix F gives the proof, and also shows that this
theorem applies to mean-squared-error (MSE) loss `(u) =
u2, mean-absolute-error loss `(u) = |u|, Huber loss and
our description-length loss from the next section.

We find empirically that the simple choice γ = −1 works
quite well, striking a good balance between encourag-
ing specialization for the best theory and also giving
some gradient for theories that currently perform slightly
worse. We term this choice L−1 the “harmonic loss”, be-
cause it corresponds to the harmonic mean of the losses
for the different theories. Based on the harmonic loss,

we propose an unsupervised differentiable divide-and-
conquer (DDAC) algorithm (Alg. 2 in Appendix B) that
simultaneously learns prediction functions {fi} and cor-
responding domain classifiers {ci} from observations.

D. Occam’s Razor

The principle of Occam’s Razor, that simpler explana-
tions are better, is quite popular among physicists. This
preference for parsimony helped dispense with phlogis-
ton, aether and other superflous concepts.

Our method therefore incorporates the minimum-
description-length (MDL) formalism [22, 25], which pro-
vides an elegant mathematical implementation of Oc-
cam’s Razor. The description length (DL) of a dataset
D is defined as the number of bits required to describe
it. For example, if regularities are discovered that en-
able data compression, then the corresponding descrip-
tion length is defined as the number of bits of the program
that produces D as its output (including both the code
bits and the compressed data bits). In our context of
predicting a time series, this means that the description
length is the number of bits required to describe the the-
ories used plus the number of bits required to store all
prediction errors. Finding the optimal data compression
and hence computing the MDL is a famous hard problem
that involves searching an exponentially large space, but
any discovery reducing the description length is a step in
the right direction, and provably avoids the overfitting
problem that plagues many alternative machine-learning
strategies [22, 25]. Commonly used neural nets often pro-
vide poor data compression, leaving ample room for im-
provement [31].

The end-goal of the AI Physicist is to discover theories
T minimizing the total description length, given by

DL(T , D) = DL(T ) +
∑
t

DL(ut), (4)

where ut = ŷt − yt is the prediction error at time step
t. By discovering simple theories that can each account
for parts of the data very well, the AI Physicist strives
to make both DL(T ) and

∑
t DL(ut) small.

Physics has enjoyed great success in its pursuit of sim-
pler theories using rather vague definitions of simplicity.
In the this spirit, we choose to compute the description
length DL not exactly, but using an approximate heuris-
tic that is numerically efficient, and significantly simpler
than more precise versions such as [32]. We compute the
DL of both theories T and prediction errors ut as the
sum of the DL of all numbers that specify them, using
the following conventions for the DL of integers, rational
numbers and real numbers.

The number of binary digits required to specify a natural
number n = 1, 2, 3, ... is approximately log2 n, so we de-
fine DL(n) ≡ log2 n for natural numbers. For an integer
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FIG. 2: The description length DL(q) is shown for the rational
numbers q ∈ [1, 2]. Occam’s Razor favors dots further down.
Our MDL rational approximation of a real number u is the
lowest point after adding a suitably shifted and scaled log+

function (solid curve, here centered on r = 1.5000017).

m, we define

DL(m) ≡ log2(1 + |m|). (5)

For a rational number q = m/n, the description length
is the sum of that for its integer numerator and (natural
number) denominator, as illustrated in Figure 2:

DL
(m
n

)
= log2[(1 + |m|)n]. (6)

For a real number r and a numerical precision floor ε, we
define

DL(r) = log+

(r
ε

)
, (7)

where the function

log+(x) ≡ 1

2
log2

(
1 + x2

)
(8)

is plotted in Figure 2. Since log+(x) ≈ log2 x for x �
1, DL(r) is approximately the description length of the
integer closest to r/ε. Since log+(x) ∼∝ x2 for x � 1,
DL(r) simplifies to a quadratic (mean-squared-error) loss
function below the numerical precision, which will prove
useful below.1

Note that as long as all prediction absolute errors |ui| � ε
for some dataset, minimizing the total description length∑
i DL(ui) instead of the MSE

∑
i u

2
i corresponds to min-

imizing the geometric mean instead of the arithmetic
mean of the squared errors, which encourages focusing

1 Natural alternative definitions of log+(x) include log2 (1 + |x|),
log2 max(1, |x|), (ln 2)−1 sinh−1 |x| and (2 ln 2)−1 sinh−1(x2).
Unless otherwise specified, we choose ε = 2−32 in our experi-
ments.

more on improving already well-fit points.
∑
i DL(ui)

drops by 1 bit whenever one prediction error is halved,
which is can typically be achieved by fine-tuning the fit
for many valid data points that are already well predicted
while increasing DL for bad or extraneous points at most
marginally.

For numerical efficiency, our AI Physicist minimizes the
description length of equation (4) in two steps: 1) All
model parameters are set to trainable real numbers, and
the DDAC algorithm is applied to minimize the harmonic
loss L−1 with `(u) ≡

∑
i DL(ui) using equation (7) and

the annealing procedure for the precision floor described
in Appendix B. 2) Some model parameters are replaced
by rational numbers as described below, followed by re-
optimization of the other parameters. The idea behind
the second step is that if a physics experiment or neu-
ral net training produces a parameter p = 1.4999917, it
would be natural to interpret this as a hint, and to check
if p = 3/2 gives an equally acceptable fit to the data,
reducing total DL. We implement step 2 using contin-
ued fraction expansion as described in Appendix C and
illustrated in Figure 3.

E. Unification

Physicists aspire not only to find simple theories that ex-
plain aspects of the world accurately, but also to discover
underlying similarities between theories and unify them.
For example, when James Clerk Maxwell corrected and
unified four key formulas describing electricity and mag-
netism into his eponymous equations (dF = 0, d ?F = J
in differential form notation), he revealed the nature of
light and enabled the era of wireless communication.

Here we make a humble attempt to automate part of this
process. The goal of the unification is to output a mas-
ter theory T = {(fp, ·)}, such that varying the parameter
vector p ∈ Rn can generate a continuum of theories (fp, ·)
including previously discovered ones. For example, New-
ton’s law of gravitation can be viewed as a master theory
unifying the gravitational force formulas around different
planets by introducing a parameter p corresponding to
planet mass. Einstein’s special relativity can be viewed
as a master theory unifying the approximate formulas for
v � c and v ≈ c motion.

We perform unification by first computing the descrip-

tion length dl(i) of the prediction function fi (in sym-
bolic form) for each theory i and performing clustering

on {dl(i)}. Unification is then achieved by discovering
similarities and variations between the symbolic formu-
las in each cluster, retaining the similar patterns, and
introducing parameters in place of the parameters that
vary as detailed in Appendix D.
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FIG. 3: Illustration of our minimum-description-
length (MDL) analysis of the parameter vector
p = {π,

√
2, 3.43180632382353}. We approximate each

real number r as a fraction ak/bk using the first k terms of its
continued fraction expansion, and for each integer k = 1, ...,
we plot the number of “data bits” required to encode the
prediction error r − ak/bk to 14 decimal places versus the
number of “model bits” required to encode the rational
approximation ak/bk, as described in the text. We then
select the point with smallest bit sum (furthest down/left
from the diagonal) as our first approximation candidate to
test. Generic irrational numbers are incompressible; the
total description length (model bits+data bits) is roughly
independent of k as is seen for π and

√
2, corresponding

to a line of slope −1 around which there are small random
fluctuations. In contrast, the green/light grey curve (bottom)
is for a parameter that is anomalously close to a rational
number, and the curve reveals this by the approximation
53/17 reducing the total description length (model+data
bits) by about 16 bits.

F. Lifelong Learning

Isaac Newton once said “If I have seen further it is by
standing on the shoulders of giants”, emphasizing the
utility of building on past discoveries. At a more basic
level, our past experiences enable us humans to model
new environments much faster than if we had to re-
acquire all our knowledge from scratch. We therefore
embed a lifelong-learning strategy into the architecture
of the AI Physicist. As shown in Fig. 1 and Alg. 1, the
theory hub stores successfully learned theories, organizes
them with our Occam’s-Razor and unification algorithms
(reminiscent of what humans do while dreaming and re-
flecting), and when encountering new environments, uses

its accumulated knowledge to propose new theories that
can explain parts of the data. This both ensures that past
experiences are not forgotten and enables faster learn-
ing in novel environments. The detailed algorithms for
proposing and adding theories are in Appendix E.

III. RESULTS OF NUMERICAL EXPERIMENTS

A. Physics Environments

We test our algorithms on two suites of benchmarks, each
with increasing complexity. In all cases, the goal is to
predict the two-dimensional motion as accurately as pos-
sible. One suite involves chaotic and highly nonlinear
motion of a charged double pendulum in two adjacent
electric fields. The other suite involves balls affected
by gravity, electromagnetic fields, springs and bounce-
boundaries, as exemplified in Figure 4. Within each spa-
tial region, the force corresponds to a potential energy
function V ∝ (ax + by + c)n for some constants a, b,
c, where n = 0 (no force), n = 1 (uniform electric or
gravitational field), n = 2 (spring obeying Hooke’s law)
or n =∞ (ideal elastic bounce), and optionally involves
also a uniform magnetic field. The environments are sum-
marized in Table II.

B. Numerical Results

In the mystery world example of Figure 4, after the
DDAC algorithm 2) taking the sequence of coordinates as
the only input, we see that the AI Physicist has learned
to simultaneously predict the future position of the ball
from the previous two, and classify without external su-
pervision the observed inputs into four big physics do-
mains. The predictions are seen to be more accurate
deep inside the domains (tiny dots) than near bound-
aries (larger dots) where transitions and bounces create
small domains with laws of motion that are harder to
infer because of complexity and limited data. Because
these small domains can be automatically inferred and
eliminated once the large ones are known as described
in Appendix G, all accuracy benchmarks quoted below
refer to points in the large domains only.

After DDAC, the AI Physicist performs MDL-Occam’s-
razor (Alg. 3) on the learned theories. As an example,
it discovers that the motion deep inside the lower-left
quadrant obeys the difference equation parameterized by
a learned 3-layer neural net, which after the first collapse-
Layer transformation simplifies to

ŷt =

(
-0.99999994 0.00000006 1.99999990 -0.00000012
-0.00000004 -1.0000000 0.00000004 2.00000000

)
xt

+

(
0.01088213

-0.00776199

)
, (9)
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FIG. 4: In this sample mystery world, a ball moves through a
harmonic potential (upper left quadrant), a gravitational field
(lower left) and an electromagnetic field (lower right quad-
rant) and bounces elastically from four walls. The only input
to the AI Physicist is the sequence of dots (ball positions);
the challenge is to learn all boundaries and laws of motion
(predicting each position from the previous two). The color
of each dot represents the domain into which it is classified
by c, and its area represents the description length of the er-
ror with which its position is predicted (ε = 10−6) after the
DDAC (differentiable divide-and-conquer) algorithm; the AI
Physicist tries to minimize the total area of all dots.

with DL(f) = 212.7 and DL(ut) = 2524.1. The snapping
stage thereafter simplifies to

ŷt =

(
-1 0 2 0
0 -1 0 2

)
xt +

(
0.010882

-0.007762

)
. (10)

which has lower description length in both model bits
(DL(f) = 55.6) and data bits (DL(ut) = 2519.6) and
gets transformed to the symbolic expressions

x̂t+2 = 2xt+1 − xt + 0.010882,

ŷt+2 = 2yt+1 − yt − 0.007762, (11)

where we have writen the 2D position vector y = (x, y)
for brevity. During unification (Alg. D), the AI Physicist
discovers multiple clusters of theories based on the DL of
each theory, where one cluster has DL ranging between
48.86 and 55.63, which it unifies into a master theory fq
with

x̂t+2 = 2xt+1 − xt + q1,

ŷt+2 = 2yt+1 − yt + q2, (12)

effectively discovering a “gravity” master theory out of
the different types of environments it encounters. If so

desired, the difference equations (12) can be automati-
cally generalized to the more familiar-looking differential
equations

ẍ = gx,

ÿ = gy,

where gi ≡ qi(∆t)
2, and both the Harmonic Oscillator

Equation and Lorentz Force Law of electromagnetism can
be analogously auto-inferred from other master theories
learned.

Many mystery domains in our test suite involve laws of
motion whose parameters include both rational and irra-
tional numbers. To count a domain as “solved” below,
we use the very stringent requirement that any rational
numbers (including integers) must be discovered exactly,
while irrational numbers must be recovered with accu-
racy 10−4.

We apply our AI Physicist to 40 mystery worlds in se-
quence (Appendix H). After this training, we apply it to a
suite of 40 additional worlds to test how it learns different
numbers of examples. The results are shown tables III
and IV, and Table II summarizes these results using the
median over worlds. For comparison, we also show results
for two simpler agents with similar parameter count: a
“baseline” agent consisting of a three-layer feedforward
MSE-minimizing leakyReLU network and a “newborn”
AI Physicist that has not seen any past examples and
therefore cannot benefit from the lifelong-learning strat-
egy.

We see that the newborn agent outperforms baseline on
all the tabulated measures, and that the AI Physicist
does still better. Using all data, the Newborn agent
and AI Physicist is able to predict with mean-squared
prediction error below 10−13, more than nine orders of
magnitude below baseline. Moreover, the Newborn and
AI Physicist agents are able to simultaneously learn the
domain classifiers with essentially perfect accuracy, with-
out external supervision. Both agents are able to solve
above 90% of all the 40 mystery worlds according to our
stringent criteria.

The main advantage of the AI Physicist over the New-
born agent is seen to be its learning speed, attaining given
accuracy levels faster, especially during the early stage of
learning. Remarkably, for the subsequent 40 worlds, the
AI Physicist reaches 0.01 MSE within 35 epochs using
as little as 1% of the data, performing almost as well
as with 50% of the data much getter than the Newborn
agent. This illustrates that the lifelong learning strategy
enables the AI Physicist to learns much faster in novel
environments with less data. This is much like an expe-
rienced scientist can solve new problems way faster than
a beginner by building on prior knowledge about similar
problems.

Our double-pendulum mysteries (Appendix H 2) are
more challenging for all the agents, because the motion is



7

Benchmark Baseline Newborn AI Physicist
log10 mean-squared error -3.89 -13.95 -13.88
Classification accuracy 67.56% 100.00% 100.00%
Fraction of worlds solved 0.00% 90.00% 92.50%
Description length for f 11,338.7 198.9 198.9
Epochs until 0.01 MSE 95 83 15
Epochs until 0.0001 MSE 6925 330 45
Epochs until 10−6 MSE ∞ 5403 3895
Epochs until 10−8 MSE ∞ 6590 5100
log10 MSE error

using 100% of data -3.78 -13.89 -13.89
using 50% of data -3.84 -13.76 -13.81
using 10% of data -3.16 -7.38 -10.54
using 5% of data -3.06 -6.06 -6.20
using 1% of data -2.46 -3.69 -3.95

Epochs until 0.01 MSE
using 100% of data 95 80 15
using 50% of data 190 152.5 30
using 10% of data 195 162.5 30
using 5% of data 205 165 30
using 1% of data 397.5 235 35

TABLE II: Summary of numerical results, taking the median
over 40 mystery environments from Table III (top part) and
on 40 novel environments with varying fraction of random
examples (bottom parts), where each world is run with 10
random initialization and taking the best performance. Ac-
curacies refer to big regions only.

more nonlinear and indeed chaotic. Although none of our
double-pendulum mysteries get exactly solved according
to our very stringent above-mentioned criterion, Figure 7
illustrates that the Newborn agent does a good job: it
discovers the two domains and classifies points into them
with an accuracy of 96.5%. Overall, the Newborn have a
median best accuracy of 91.0% compared with the base-
line of 76.9%. The MSE prediction error is comparable
to the baseline performance (∼ 4× 10−4) in the median,
since both architectures have similar large capacity. We
analyze this challenge and opportunities for improvement
below.

IV. CONCLUSIONS

We have presented a simple “AI Physicist” unsupervised
learning agent centered around the learning and manip-
ulation of theories, which parsimoniously predict both
aspects of the future (from past observations) and the do-
main in which these predictions are accurate. Testing it
on a suite of mystery worlds involving random combina-
tions of gravity, electromagnetism, harmonic motion and
elastic bounces, we found that its divide-and-conquer and
Occam’s Razor strategies effectively identified domains
with different laws of motion and reduced the mean-
squared prediction error billionfold, typically recovering
integer and rational theory parameters exactly. These
two strategies both encouraged prediction functions to

specialize: the former on the domains they handled best,
and the latter on the data points within their domain that
they handled best. Adding the lifelong-learning strategy
greatly accelerated learning in novel environments.

Our work suggests many opportunities for improvement
of the implementation. The more modest success in
the double-pendulum experiments illustrated the value
of learned theories being simple: if they are highly com-
plex, they are less likely to unify or generalize to future
environments, and the correspondingly complex base-
line model with have enough expressive power to ap-
proximate the motion in all domains at once. It will
be valuable to improve techniques for simplifying com-
plex learned neural nets (reducing their total description
length from equation (4)), for example by using Monte-
Carlo-Markov-Chain-based and genetic techniques [33],
reinforcement learning [34, 35] and analytic regression
[36] literature to simplify and shrink the model architec-
ture. It will also be interesting to generalize our imple-
mentation to simplify not only the prediction functions,
but also the classifiers, for example to find sharp domain
boundaries composed of hyperplanes or other simple sur-
faces. These and other improvements to the algorithms
that implement our AI Physicist paradigm could enable
future unsupervised learning agents to learn simpler and
more accurate models faster from fewer examples.
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Appendix A: AI Physicist Algorithm

The detailed AI Physicist algorithm is presented Al-
gorithm 1, with links to each of the individual sub-
algorithms.

Algorithm 1 AI Physicist: Overall algorithm

Given observations D = {(xt,yt)} from new environment:

1: TM0 ← Hub.propose-theories(D,M0) (Alg. 6)
2: T ← divide-and-conquer(D,TM0)(Alg. 2)
3: Hub.add-theories(T , D) (Alg. 5)

Organizing theory hub:
T ←Hub.Occam’s-Razor-with-MDL(T , D) (Alg. 3)
T ←Hub.unify(T ) (Alg. 4)

Appendix B: The Differentiable Divide-and-Conquer
(DDAC) Algorithm

Here we elaborate on our proposed differentiable divide-
an-conquer (DDAC) algorithm with generalized-mean
loss (Eq. (2)). This loss with γ < 0 works with a broad
range of distance functions ` satisfying Theorem 1. Since
the goal of our AI Physicist is to minimize the overall
description length (DL) from equation (4), we choose `
to be the DL loss function of equation (7) together with
γ = −1 (harmonic loss), which works quite well in prac-
tice.

Algorithm 2 describes our divide-and-conquer imple-
mentation, which consists of two stages. In the
first stage (steps 2-6), it applies the subroutine
HarmonicTrain(T , `DL,ε, D) to train the theories T a few
times with the precision floor ε gradually lowered accord-
ing to the following annealing schedule. We set the initial
precision floor ε to be quite large so that ` initially ap-
proximates an MSE loss function. After each successive
iteration, we reset ε to the median prediction error.

The DL loss function from equation (7) is theoretically
desirable but tricky to train, both because it is non-
convex and because it is quite flat and uninformative far
from its minimum. Our annealing schedule helps over-
come both problems: initially when ε is large, it approx-
imates MSE-loss which is convex and guides the training
to a good approximate minimum, which further training
accurately pinpoints as ε is reduced.

The subroutine HarmonicTrain forms the core of the al-
gorithm. It uses the harmonic mean of the DL-loss of
multiple prediction functions fθ = (f1, ..., fM ) (i.e., equa-
tion (2) with γ = −1 and ` =DL) to simultaneously train
these functions, encouraging them to each specialize in
the domains where they predict best (as proven by The-
orem 1), and simultaneously trains the domain classifier
cφ = (c1, ...cM ) using each example’s best-performing

Algorithm 2 AI Physicist: Differentiable
Divide-and-Conquer with Harmonic Loss

Require Dataset D = {(xt,yt)}
Require M : number of initial total theories for training
Require TM0 = {(fi, ci)}, i = 1, ...,M0, 0 ≤ M0 ≤ M :
theories proposed from theory hub
Require K: number of gradient iterations
Require βf, βc: learning rates
Require ε0: initial precision floor

1: Randomly initialize M−M0 theories Ti, i = M0+1, ...M .
Denote T = (T1, , ..., TM ), fθ = (f1, ..., fM ) with learnable
parameters θ; cφ = (c1, ...cM ) with learnable parameters
φ.

// Harmonic training with DL loss:
2: T ← HarmonicTrain(T , `DL,ε0 , D)
3: ε← ε0
4: for k in {1, 2, 3, 4} do:
5: T ← HarmonicTrain(T , `DL,ε, D)
6: ε← set epsilon(D) // median prediction error
7: end for

// Fine-tune each theory in its domain:
8: for i in {1, ...,M} do:

9: D(i) ← {(xt,yt)| arg maxj{cj(xt)} = i}
10: fi ← Minimizefi

∑
(xt,yt)∈D(i) `DL,ε[fi(xt),yt]

11: end for
12: return T

subroutine HarmonicTrain(T , `,D) :
s1: for k in {1, ...,K} do:

// Gradient descent on fθ with harmonic loss:

s2: Lf ←
∑

(xt,yt)∈D
M/(

∑M
i=1

1
`[fi(xt),yt]

)

s3: θ ← θ − βf∇θLf

// Gradient descent on cφ with the best performing
theory index as target:

s4: bt ← arg mini{`[fi(xt),yt]}, ∀t
s5: Lc ←

∑
(xt,·)∈D CrossEntropy[softmax(cφ(xt)), bt]

s6: φ← φ− βc∇φLc

s7: end for
s8: T ← AddTheories(T , D) //Optional
s9: T ← DeleteTheories(T , D) //Optional
s10: return T

prediction function as target, with categorical cross-
entropy loss. After several rounds of HarmonicTrain with
successively lower precision floors, each prediction func-
tion typically becomes good at predicting part of the
dataset, and the domain classifier becomes good at pre-
dicting for each example which prediction function will
predict best.

AddTheories(T , D) inspects each theory Ti describing at
least a large fraction (we use 30%) of the examples to to
see if a non-negligible proportion of examples (we use a
threshold of 5%) of the examples inside its domain have
error larger than a certain limit (we use 2× 10−6). If so,
it uses those examples to initialize a new theory TM+1,
and performs tentative training together with other theo-
ries using HarmonicTrain without steps s8 and s9. If the
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resulting harmonic loss Lγ is smaller than before adding
the new theory, TM+1 is accepted and retained, otherwise
it is rejected and training reverts to the checkpoint before
adding the theory. DeleteTheories(T , D) deletes theories
whose domain or best-predicted examples cover a negli-
gible fraction of the examples (we use a delete threshold
of 0.5%) .

In the second stage (steps 7-10), the domain classifier
c = (c1, c2, ...cM ) is used to predict each theory’s do-
main, and fine-tunes each prediction function fi only on
the examples classified as belonging to its domain. The
reason that we assign examples to domains using our do-
main classifier rather than prediction accuracy is that
the trained domains are likely to be simpler and more
contiguous, thus generalizing better to unseen examples
than, e.g., the nearest neighbor algorithm.

We now we specify the hyperparameters used for Algo-
rithm 1 in our experiments. We set M0, the number of
theories proposed from theory hub, to be 2 for all exper-
iments. We set the number of initial total theories for
training to be M = 4 for mystery-world experiments and
M = 3 for double pendulum experiments. We set the
initial precision floor ε = 10 and the number of gradient
iterations K = 10000. We use the Adam [37] optimizer
with default parameters for the optimization of both the
prediction function and the domain classifier. We set the
initial learning rate β = 5×10−3 for the prediction func-
tions fθ and β = 10−3 for the domain classifier cφ. We
also use a learning rate scheduler that monitors the vali-
dation loss every 10 epochs, and divides the learning rate
by 10 if the validation loss has failed to decrease after 40
epochs and stops training early if there is no decrease
after 200 epochs — or if the entire MSE loss for all the
theories in their respective domains drops below 10−12.

To the main harmonic loss Lγ , we add two regularization
terms. One is L1 loss whose strength increases quadrat-
ically from 0 to 10−8 (to 10−7 in the double-pendulum
experiment) during the first 5000 epochs and remains
constant thereafter. The second regularization term is
a very small MSE loss of strength 10−7, to encourage
the theories to remain not too far away from the target
outside their domain.

Appendix C: Occam’s Razor algorithm

Pushing on after the differentiable divide-and-conquer
algorithm with harmonic loss that minimizes the∑
t DL(ut) term in Eq. (4), the AI Physicist then strives

to minimize the DL(T ) term, which can be decomposed
as DL(T ) = DL(fθ) + DL(cφ), where fθ = (f1, ...fM )
and cφ = (c1, ...cM ). We focus on minimizing DL(fθ),
since in different environments the prediction functions
fi can often be reused, while the domains may differ. As
mentioned, we define DL(fθ) simply as the sum of the

description lengths of the number parameterizing fθ:

DL(fθ) =
∑
j

DL(θj). (C1)

This means that DL(fθ) can be significantly reduced if
an irrational parameter is replaced by a simple rational
number.

Algorithm 3 AI Physicist: Occam’s Razor with
MDL

Require Dataset D = {(xt,yt)}
Require T = {(fi, ci)}, i = 1, ...,M : theories trained after
Alg. 2
Require ε: Precision floor for `DL,ε
1: for i in {1, ...,M} do:

2: D(i) ← {(xt,yt)| arg maxj{cj(xt)} = i}
3: fi ←MinimizeDL(collapseLayers, fi, D

(i), ε)

4: fi ←MinimizeDL(localSnap, fi, D
(i), ε)

5: fi ←MinimizeDL(integerSnap, fi, D
(i), ε)

6: fi ←MinimizeDL(rationalSnap, fi, D
(i), ε)

7: fi ←MinimizeDL(toSymbolic, fi, D
(i), ε)

8: end for
9: return T

subroutine MinimizeDL(transformation, fi, D
(i),ε):

s1: while transformation.is applicable(fi) do:
s2: dl0 ← DL(fi) +

∑
(xt,yt)∈D(i) `DL,ε[fi(xt),yt]

s3: fclone ← fi // clone fi in case transformation fails
s4: fi ← transformation(fi)
s5: fi ← Minimizefi

∑
(xt,yt)∈D(i) `DL,ε[fi(xt),yt]

s6: dl1 ← DL(fi) +
∑

(xt,yt)∈D(i) `DL,ε[fi(xt),yt]

s7: if dl1 > dl0 return fclone
s8: end while
s9: return fi

If a physics experiment or neural net training produces a
parameter p = 1.999942, it would be natural to interpret
this as a hint, and to check if p = 2 gives an equally ac-
ceptable fit to the data. We formalize this by replacing
any real-valued parameter pi in our theory T by its near-
est integer if this reduces the total description length in
equation (4), as detailed below. We start this search for
integer candidates with the parameter that is closest to
an integer, refitting for the other parameters after each
successful “integer snap”.

What if we instead observe a parameter p = 1.5000017?
Whereas generic real numbers have a closest integer, they
lack a closest rational number. Moreover, as illustrated
in Figure 2, we care not only about closeness (to avoid in-
creasing the second term in equation (4)), but also about
simplicity (to reduce the first term). To rapidly find the
best “rational snap” candidates (dots in Figure 2 that
lie both near p and far down), we perform a continued
fraction expansion of p and use each series truncation as
a rational candidate. We repeat this for all parameters
in the theory T , again accepting only those snaps that
reduce the total description length. We again wish to try
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the most promising snap candidates first; to rapidly iden-
tify promising candidates without having to recompute
the second term in equation (4), we evaluate all trunca-
tions of all parameters as in Figure 3, comparing the de-
scription length of the rational approximation q = m/n
with the description length of the approximation error
|p − q|. The most promising candidate minimizes their
sum, i.e., lies furthest down to the left of the diagonal
in the figure. The figure illustrates how, given the pa-
rameter vector p = {π,

√
2, 3.43180632382353}, the first

snap to be attempted will replace the third parameter by
53/17.

We propose Algorithm 3 to implement the above mini-
mization of DL(fθ) without increasing

∑
t DL(ut). For

each theory Ti = (fi, ci), we first extract the examples
D(i) inside its domain, then perform a series of tentative
transformations (simplifications) of the prediction func-
tion fi using the MinimizeDL subroutine. This subrou-
tine takes fi, the transformation, and D(i) as inputs and
repeatedly applies the transformation to fi. After each
such transformation, it fine-tunes the fit of fi to D(i) us-
ing gradient descent. For determining whether to accept
the transformation, Algorithm 3 presents the simplest 0-
step patience implementation: if the description length
dl = DL(fi) +

∑
(xt,yt)∈D(i) `DL,ε(fi(xt),yt) for theory i

decreases, then apply the transformation again if pos-
sible, otherwise exit the loop. In general, to allow for
temporary increase of DL during the transformations, a
non-zero patience can be adopted: at each step, save the
best performing model as the pivot model, and if DL does
not decrease during n consecutive transformations inside
MinimizeDL, exit the loop. In our implementation, we
use a 4-step patience.

We now detail the five transformations used in Algorithm
3. The collapseLayer transformation finds all successive
layers of a neural net where the lower layer has linear
activation, and combines them into one. The toSymbolic
transformation transforms fi from the form of a neural
net into a symbolic expression (in our implementation,
from a PyTorch net to a SymPy symbolic lambda expres-
sion). These two transformations are one-time transfor-
mations (for example, once fi has been transformed to a
symbolic expression, toSymbolic cannot be applied to it
again.) The localSnap transformation successively sets
the incoming weights in the first layer to 0, thus favor-
ing inputs that are closer to the current time step. The
integerSnap transformation finds the (non-snapped) pa-
rameters in fi that is closest to an integer, and snaps it to
that integer. The rationalSnap transformation finds the
(non-snapped) parameter in fi that has the lowest bit
sum when replaced by a rational number, as described
in section II D, and snaps it to that rational number.
The latter three transformations can be applied multiple
times to fi, until there are no more parameters to snap
in fi, or the transformation followed by fine-tuning fails
to reduce the description length.

Algorithm 4 AI Physicist: Theory Unification

Require Hub: theory hub
Require K: initial number of clusters
1: for (fi, ci) in Hub.all-symbolic-theories do:

2: dl(i) ← DL(fi)
3: end for
4: {Sk} ←Cluster {fi} into K clusters based on dl(i)

5: for Sk in {Sk} do:
6: (gik ,hik )← Canonicalize(fik ), ∀fik ∈ Sk
7: h∗k ← Mode of {hik |fik ∈ Sk}.
8: Gk ← {gik |hik = h∗k}
9: gpk

←Traverse all gik ∈ Gk with synchronized steps,

replacing the coefficient by a pjk when not all
coefficients at the same position are identical.

10: fpk ← toPlainForm(gpk
)

11: end for
12: T ← {(fpk , ·)}, k = 1, 2, ...K
13: T ← MergeSameForm(T )
14: return T

subroutine Canonicalize(fi):
s1: gi ← ToTreeForm(fi)
s2: hi ← Replace all non-input coefficient by a symbol s
return (gi,hi)

Appendix D: Unification algorithm

The unification process takes as input the symbolic pre-
diction functions {(fi, ·)}, and outputs master theories
T = {(fp, ·)} such that by varying each p in fp, we can
generate a continuum of prediction functions fi within
a certain class of prediction functions. The symbolic
expression consists of 3 building blocks: operators (e.g.
+,−,×,/), input variables (e.g. x1, x2), and coefficients
that can be either a rational number or irrational num-
ber. The unification algorithm first calculates the DL

dl(i) of each prediction function, then clusters them into
K clusters using e.g. K-means clustering. Within each
cluster Sk, it first canonicalizes each fik ∈ Sk into a 2-
tuple (gik ,hik), where gik is a tree-form expression of fik
where each internal node is an operator, and each leaf is
an input variable or a coefficient. When multiple order-
ings are equivalent (e.g. x1 + x2 + x3 vs. x1 + x3 + x2),
it always uses a predefined partial ordering. hik is the
structure of gik where all coefficients are replaced by an
s symbol. Then the algorithm obtains a set of gik that
has the same structure hik with the largest cardinality
(steps 7-8). This will eliminate some expressions within
the cluster that might interfere with the following unifi-
cation process. Step 9 is the core part, where it traverses
each gik ∈ Gk with synchronized steps using e.g. depth-
first search or breath-first search. This is possible since
each gik ∈ Gk has the same tree structure h∗k. During
traversing, whenever encountering a coefficient and not
all coefficients across Gk at this position are the same,
replace the coefficients by some symbol pjk that has not



11

been used before. Essentially, we are turning all coef-
ficients that varies across Gk into a parameter, and the
coefficient that does not vary stays as it is. In this way, we
obtain a master prediction function fpk . Finally, at step
13, the algorithm merges the master prediction functions
in T = {(fpk , ·)} that have the exact same form, and
return T . The domain classifier is neglected during the
unification process, since at different environments, each
prediction function can have vastly different spacial do-
mains. It is the prediction function (which characterizes
the equation of motion) that is important for generaliza-
tion.

Appendix E: Adding and Proposing theories

Here we detail the algorithms adding theories to the hub
and proposing them for use in new environments. Alg. 6
provides a simplest version of the theory proposing algo-
rithm. Given a new dataset D, the theory hub inspect
all theories i, and for each one, counts the number ni of
data points where it outperforms all other theories. The
top M0 theories with largest ni are then proposed.

For theory adding after training with differentiable-
divide-and-conquer (Alg. 2), each theory i calculates its

description length dl(i) inside its domain. If its dl(i) is
smaller than a threshold η, then the theory (fi, ci) with
its corresponding examples D(i) are added to the theory
hub. The reason why the data D(i) are also added to
the hub is that D(i) gives a reference for how the theory
(fi, ci) was trained, and is also needed in the Occam’s
Razor algorithm.

Algorithm 5 AI Physicist: Adding Theories to
Hub

Require Hub: theory hub
Require T = {(fi, ci}: Trained theories from Alg. 2
Require Dataset D = {(xt,yt)}
Require η: DL threshold for adding theories to hub
1: D(i) ← {(xt,yt)| arg maxj{cj(xt)} = i}, ∀i
2: dl(i) ← 1

|D(i)|

∑
(xt,yt)∈D(i) `DL,ε(fi(xt),yt), ∀i

3: for i in {1, 2, ...|T |} do:

4: if dl(i) < η Hub.addIndividualTheory((fi, ci), D
(i))

5: end for

Algorithm 6 AI Physicist: Theory Proposing
from Hub

Require Hub: theory hub
Require Dataset D = {(xt,yt)}
Require M0: number of theories to propose from the hub
1: {(fi, ci)} ← Hub.retrieve-all-theories()

2: D
(i)
best ← {(xt,yt)|argminj`DL,ε[fj(xt),yt] = i}, ∀i

3: TM0 ←
{

(fi, ci)
∣∣D(i)

best ranks among M0 largest sets in {D(i)
best}

}
4: return TM0

Appendix F: Proof of Theorem 1 and corollary

Here we give the proof for Theorem 1, restated here for
convenience.

Theorem 1 Let ŷ
(i)
t ≡ fi(xt) denote the prediction of the

target yt by the function fi, i = 1, 2, ...M . Suppose that
γ < 0 and `(ŷt,yt) = `(|ŷt − yt|) for a monotonically
increasing differentiable function `(u) that vanishes on
[0, u0] for some u0 ≥ 0, with `(u)γ strictly convex for
u > u0.

Then if 0 < `(ŷ
(i)
t ,yt) < `(ŷ

(j)
t ,yt), we have∣∣∣∣∣ ∂Lγ∂u

(i)
t

∣∣∣∣∣ >
∣∣∣∣∣ ∂Lγ∂u

(j)
t

∣∣∣∣∣ , (F1)

where u
(i)
t ≡ |ŷ

(i)
t − yt|.

Proof. Since u
(i)
t ≡ |ŷ

(i)
t −yt| and `(ŷt,yt) = `(|ŷt−yt|),

the generalized mean loss Lγ as defined in Eq. 3 can be
rewritten as

Lγ =
∑
t

(
1

M

M∑
k=1

`(u
(k)
t )γ

) 1
γ

, (F2)

which implies that∣∣∣∣∣ ∂Lγ∂u
(i)
t

∣∣∣∣∣ =

∣∣∣∣∣∣ 1

γM

(
1

M

M∑
k=1

`(u
(k)
t )γ

) 1
γ−1

d`(u
(i)
t )γ

du
(i)
t

∣∣∣∣∣∣
=

1

|γ|M

(
1

M

M∑
k=1

`(u
(k)
t )γ

) 1
γ−1 ∣∣∣∣∣d`(u(i)t )γ

du
(i)
t

∣∣∣∣∣ .
Since only the last factor depends on i, proving equa-
tion (F1) is equivalent to proving that∣∣∣∣∣∂`(u(i)t )γ

∂u
(i)
t

∣∣∣∣∣ >
∣∣∣∣∣∂`(u(j)t )γ

∂u
(j)
t

∣∣∣∣∣ . (F3)

Let us henceforth consider only the case u > u0, since

the conditions `(u
(j)
t ) > `(u

(i)
t ) > 0 imply u

(j)
t > u

(i)
t >

u0. Since γ < 0, `(u) > 0 and `′(u) ≥ 0, we have
∂`(u)γ

∂u = γ`(u)γ−1`′(u) < 0, so that
∣∣∣∂`(u)γ∂u

∣∣∣ = −∂`(u)
γ

∂u .

Because `(u)γ is differentiable and strictly convex, its

derivative ∂`(u)γ

∂u is monotonically increasing, implying

that
∣∣∣∂`(u)γ∂u

∣∣∣ = −∂`(u)
γ

∂u is monotonically decreasing.

Thus
∣∣∣d`(u1)

γ

du1

∣∣∣ > ∣∣∣d`(u2)
γ

du2

∣∣∣ whenever u1 < u2. Setting

u1 = `(ŷ
(i)
t ,yt) and u2 = `(ŷ

(j)
t ,yt) therefore implies

equation (F3), which completes the proof.

The following corollary 1.1 demonstrates that the theo-
rem applies to several popular loss functions as well as
our two description-length loss functions.
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Corollary 1.1 Define u ≡ |ŷ − y|, the following loss
functions which depend only on u satisfy the conditions
for Theorem 1:

• `(u) = ur for any r > 0, which includes MSE loss
(r = 2) and mean-absolute-error loss (r = 1).

• Huber loss: `δ(u) =

{
1
2u

2, u ∈ [0, δ]

δ(u− δ
2 ), otherwise,

where δ > 0

• Description length loss `DL,ε(u) =
1
2 log2

(
1 +

(
u
ε

)2)
• Hard description length loss `DLhard,ε(u) =

log2 max
(
1, uε

)
Proof. (1) For `(u) = ur, it is non-negative and `(0) =
0. The support for `(u) > 0 is u > 0. When u > 0,

we have `′(u) = pur−1 > 0. Furthermore, ∂2`(u)γ

∂u2 =

γr(γr − 1)uγr−2. Since γ < 0, r > 0, we have γr < 0

and γr − 1 < 0, and ∂2`(u)γ

∂u2 = γr(γr − 1)uγr−2 > 0 for
u > 0. Thus `(u)γ is strictly convex on u > 0. Therefore,
`(u) = ur with r > 0 satisfies the condition for Theorem
1.

(2) For Huber loss, it is non-negative and `δ(0) = 0. The
support for `δ(u) > 0 is u > 0. When u > 0, we have

`′δ(u) =

{
u, u ∈ (0, δ]

δ, u ∈ (δ,∞)

which is always positive. Furthermore,

∂2`δ(u)γ

∂u2
=

{
21−γγ(2γ − 1)u2γ−2, u ∈ (0, δ]

δγγ(γ − 1)(u− 1
2δ)

γ−2, u ∈ (δ,∞)

Since γ < 0, we have γ(2γ − 1) > 0 and γ(γ − 1) > 0.

Therefore, in both cases ∂2`δ(u)
γ

∂u2 > 0. Hence, `δ(u)γ is
strictly convex when u > 0, satisfying the condition for
Theorem 1.

(3) For the description length loss `DL,ε(u) =
1
2 log2

(
1 +

(
u
ε

)2)
, it is non-negative and `DL,ε(0) = 0,

`′DL,ε(u) = u

ε
(
1+(uε )

2
) > 0 for u > 0. Therefore,

`DL,ε(u) = `DL,ε(0) +
∫ u
0
`′DL,ε(u)du > 0 for u > 0.

Hence, the support of `DL,ε(u) > 0 is u > 0, on which
`′DL,ε(u) > 0.

Now let us prove that when u > 0,
∂2`DL,ε(u)

γ

∂u2 > 0. For

simplicity, define ρ(u) ≡ log2(1+u2), we have `DL,ε(u) =
1
2ρ(uε ), and

∂2`DL,ε(u)
γ

∂u2 = 1
2γε2

∂2ρ(u/ε)γ

∂u2 . Thus we only

have to prove that ∂2ρ(u)γ

∂u2 > 0 always holds on (0,∞).

We have ∂2ρ(u)γ

∂u2 = −2γ(log(1+u2))γ−2

(1+u2)2 · (2u2(1 − γ) +

(u2 − 1)log(1 + u2)). The factor −2γ(log(1+u
2))γ−2

(1+u2)2 is al-

ways positive when u > 0. The other factor 2u2(1 −
γ) + (u2 − 1)log(1 + u2) > 2u2 + (u2 − 1)log(1 + u2)
since γ < 0. Now we only have to prove that χ(u) ≡
2u2 + (u2 − 1)log(1 + u2) > 0 when u > 0. We have

χ(0) = 0, χ′(u) = 2u( 1+3u2

1+u2 + log(1 + u2)) > 0 when

u > 0. Therefore χ(u) = χ(0) +
∫ u
0
χ′(u)du > 0 for

u > 0. This completes the proof that
∂2`DL,ε(u)

γ

∂u2 > 0 for
u > 0, so `DL,ε(u)γ is strictly convex on u > 0. Above
all, `DL,ε(u) satisfies the condition for Theorem 1.

(4) For the hard description length loss `DLhard,ε(u) =
log2max

(
1, utε

)
, it is non-negative and `DLhard,ε(0) = 0.

The support for `DLhard,ε > 0 is u > ε. When u > ε,
`′DLhard,ε(u) = log2(uε ), `′DLhard,ε(u) = 1

uln2 > 0, and
∂2`γDLhard,ε(u)

∂u2 = (ln(u/ε))γ−2

u2ln2 · γ(−1 + γ− lnuε ). The factor
(ln(u/ε))γ−2

u2ln2 is always positive when u > ε. Also we have
−1 + γ − lnuε < 0 for u > ε since γ < 0. Therefore, when

u > ε,
∂2`γDLhard,ε(u)

∂u2 > 0 , and `γDLhard,ε(u) is strictly
convex, satisfying the condition for Theorem 1.

Appendix G: Eliminating transition domains

In this appendix, we show how the only hard problem
our AI Physicist need solve is to determine the laws of
motion far from domain boundaries, because once this is
done, the exact boundaries and transition regions can be
determined automatically.

Our AI Physicist tries to predict the next position vec-
tor yt ∈ Rd from the concatenation xt = (yt−T , ...,yt−1)
of the last T positions vectors. Consider the example
shown in Figure 5, where motion is predicted from the
last T = 3 positions in a space with d = 2 dimensions
containing n = 2 domains with different physics (an elec-
tromagnetic field in the upper left quadrant and free mo-
tion elsewhere), as well as perfectly reflective boundaries.
Although there are only two physics domains in the 2-
dimensional space, there are many more types of domains
in the Td = 6-dimensional space of xt from which the AI
Physicist makes its predictions of yt. When a trajectory
crosses the boundary between the two spatial regions,
there can be instances where xt contains 3, 2, 1 or 0
points in the first domain and correspondingly 0, 1, 2
or 3 points in the second domain. Similarly, when the
ball bounces, there can be instances where xt contains 3,
2, 1 or 0 points before the bounce and correspondingly
0, 1, 2 or 3 points after. Each of these situations in-
volves a different function xt 7→ yt and a corresponding
6-dimensional domain of validity for the AI Physicist to
learn.

Our numerical experiments showed that the AI Physi-
cist typically solves the big domains (where all vectors
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in xt lie in the same spatial region), but occasionally
fails to find an accurate solution in some of the many
small transition domains involving boundary crossings or
bounces, where data is insufficient. Fortunately, simple
post-processing can automatically eliminate these annoy-
ing transition domains with an algorithm that we will
now describe.

Observed
Extrapolated

Obs
erv

ed

Extrapolated

Obs
erv

ed

Extrapolated

Observed

Inferred 
boundary

points

FIG. 5: Points where forward and backward extrapolations
agree (large black dots) are boundary points. The tangent
vectors agree for region boundaries (upper example), but not
for bounce boundaries (lower example).

The first step of the algorithm is illuxtrated in Figure 5.
For each big domain where our AI Physicist has dis-
coved the future-predicting function xt 7→ yt, we deter-
mine the corresponding function that predicts the past
(xt 7→ yt−T−1) hy fitting to forward trajectories gener-
ated with random initial conditions. Now whenever a
trajectory passes from a big domain through a transition
region into a large domain, two different extrapolations
can be performed: forward in time from the first big do-
main or backward in time from the second big domain.
Using cubic spline interpolation, we fit continuous func-
tions yf (t) and yb(t) (smooth curves in Figure 5) to these
forward-extrapolated and backward-extrapolated trajec-
tories, and numerically find the time

t∗ ≡ arg min |yf (t)− yb(t)| (G1)

when the distance between the two predicted ball posi-
tions is minimized. If this minimum is numerically con-
sistent with zero, so that yf (t∗) ≈ yb(t∗), then we record
this as being a boundary point. If both extrapolations
have the same derivative there, i.e., if y′f (t∗) ≈ y′b(t∗),
then it is an interior boundary point between two differ-
ent regions (Figure 5, top), otherwise it is an external

boundary point where the ball bounces (Figure 5, bot-
tom).

Figure 6 show these two types of automatically computed
boundary points in green and black, respectively. These
can now be used to retrain the domain classifiers to ex-
tend the big domains to their full extent, eliminating the
transition regions.

Occasionally the boundary point determinations fill fail
because of multiple transitions within T time steps, Fig-
ure 6 illustrates that these failures (red dots) forces us
to discard merely a tiny fraction of all cases, thus hav-
ing a negligible affect on the ability to fit for the domain
boundaries.

FIG. 6: Example of automatically determined boundary
points.

Appendix H: Numerical experiment details

In this appendix, we provide supplementary details on
our benchmark problems.

1. Mystery worlds

World generation Our mystery worlds consist of a ball
elastically bouncing against the square boundary of the
two-dimensional spatial region where |x| ≤ 2 and |y| ≤ 2
(see Figure 4). In each of the four quadrants, one of the
following laws of physics are selected, together with their
parameters sampled from distributions as follows:
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1. Free motion

2. A uniform gravitational field g = {gx, gy, 0} with
gx, gy drawn from a uniform distribution: gx, gy ∼
U [−5, 5].

3. Harmonic motion with frequency ω around a line
a distance a from the origin, making an angle φ
with the x-axis; ω ∼ U [1, 4], a ∼ U [0.2, 0.5], φ ∼
U [0, 2π].

4. A uniform electric field E = {Ex, Ey, 0} and mag-
netic field B = {0, 0, Bz}; Ex, Ey ∼ U [−5, 5],
Bz ∼ U [0, 10].

To control the difficulty of the tasks and avoid near-
degenerate scenarios, we keep only mystery worlds sat-
isfying the following two criteria: (1) At least 0.01 sep-
aration between all equations of motion (EOM) in the
same world, defined as the Euclidean distance between
the vectors of coefficients specifying the EOM difference
equations, and (2) at least 0.0015 of any non-integer pa-
rameter from its nearest integer.

Trajectory simulation Within each world, we initial-
ize the ball with a random position (x, y) ∼ U [−1, 1]2

and velocity (v0 cos θ0, v0 sin θ0, 0); vr ∼ U [0.1, 0.5], θ0 ∼
U [0, 2π]. We then compute its position for N = 4, 000
times steps t = 1, 2, ..., N with time interval 0.05.

Although the above-mentioned laws of physics are lin-
ear, the mapping from past points (yt−T , ...,yt−1) to the
next points yt is generally non-linear because of region
boundaries where the ball either bounces or transitions
to a different physics region. An exception is when three
successive points lie within the same region (with the
same physics), which happens far from boundaties: in
this case, the mapping from (yt−2,yt−1) 7→ yt is deter-
ministic and linear thanks to the differential equations of
motion being second-order and linear.

Architecture For the newborn and AI Physicist agents,
each prediction function fi is implemented as a three-
layer neural net with linear activation, with two 8-neuron
hidden layers. Each domain classifier ci is implemented
as a three-layer neural net, with two hidden 8-neuron lay-
ers with leakyReLU activation σ(x) = max{0.3x, x}, and
the output layer having linear activation. The baseline
model is implemented as a single 3-layer neural net with
two hidden 16-neuron layers with leakyReLU activation
followed by a linear output layer. Note that for a fair
comparison, the baseline model has more hidden neurons,
to roughly compensate for the newborn and AI Physicist
agents typically having multiple theories. The baseline
network is nonlinear to boost its expressive power for
modeling the nonlinear prediction function of each world
as a whole. In both AI Physicist and Newborn, we set
the initial number of theories M = 4. For the AI Physi-
cist, the number of theories proposed from the theory
hub M0 = 2, to allow for both utilizing past experience
and ability to learn new theories.

Evaluation The unsupervised classification accuracy it
is defined as the fraction of correctly classified points,
using the permutation of the learned domain labels that
best matches the hidden ground truth domain labels. It
is “unsupervised” in the sense that there is no supervision
signal as to which domain label each point should be
assigned to: the AI Physicist has to figure out the number
of domains and their boundaries and assign each point
to a domain, which is a difficult task.

We define a domain as solved if the agent discovers the its
law of motion as difference equation (prediction function)
within the following stringent tolerance: all rational co-
efficients in the difference equation are exactly matched,
and all irrational coeffients agree to an accuracy better
than 10−4. Because of the nature of the physics prob-
lems, some of these difference equation coefficients take
on the values 0, −1, or 2, so solving a region requires
successful integer snapping as described in Section II D.
To make the problem even harder, we also fine-tune the
magnetic field in five of the electromagnetic regions to
make some of the coefficients simple fractions such as 1/3
and 1/4, thus making solving those regions contingent on
successful rational snapping as described in Section II D.
Domain solving can fail either by “undersnapping” (fail-
ing to approximate a floating-point number by a ratio-
nal number) or ‘oversnapping” (mistakenly rounding to
a rational number). All our mystery worlds can be down-
loaded at http://space.mit.edu/aiphysicist.html.

As shown in Appendix G, the only hard problem our AI
Physicist or other algorithms need to solve is to deter-
mine the laws of motion away from domain boundaries.
Therefore, we evaluate, tabulate and compare the per-
formance of the algorithms only on interior points, i.e.,
excluding data points (xt,yt) straddling a boundary en-
counter.

2. Double pendulum

Our double pendulum is implemented as two connected
pendulums with massless rods of length 1 and that each
have a point charge of 1 at their end. As illustrated
in Figure 7, the system state is fully determined by the
4-tuple y = (θ1, θ̇1, θ2, θ̇2) and immersed in a piecewise
constant electric field E: E = (0,−E1) in the upper half
plane y ≥ −1.05, and E = (0, E2) in the lower half plane
y < −1.05, using coordinates where y increases vertically
and the origin is at the pivot point of the upper rod.

We generate 7 environments by setting (E1, E2) equal to
(E0, 2E0), (E0, 1.5E0), (E0, E0), (E0, 0.5E0), (2E0, E0),
(1.5E0, E0), and (0.5E0, E0), where E0 = 9.8. We can
see that there are two different EOMs for the double pen-
dulum system depending on which of the two fields the
lower charge is in (the upper charge is always in E1).
We use Runge-Kutta numerical integration to simulate
y = (θ1, θ̇1, θ2, θ̇2) for 10,000 time steps with interval

https://goo.gl/ULSeUh
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log10 MSE Classification accuracy Unsolved domains Description length
Regions Base- New- AI Base- New- AI Base- New- AI Base- New- AI

line born phys line born phys line born phys line born phys
Free + gravity -4.21 -14.02 -14.04 88.59% 100.00% 100.00% 2 0 0 11271.5 60.3 60.3
Free + gravity -3.69 -14.03 -14.03 67.65% 100.00% 100.00% 2 0 0 11364.2 60.2 41.9
Free + gravity -4.18 -13.98 -13.98 80.98% 100.00% 100.00% 2 0 0 11341.7 60.6 57.6
Free + gravity -4.51 -14.06 -14.07 87.66% 100.00% 100.00% 2 0 0 11289.3 5.2 59.8
Free + harmonic -3.77 -13.99 -13.94 73.54% 100.00% 100.00% 2 0 0 11333.8 94.4 139.9
Free + harmonic -3.60 -14.05 -13.89 66.92% 100.00% 100.00% 2 0 0 11337.4 173.0 172.8
Free + harmonic -3.77 -14.04 -13.95 59.46% 100.00% 100.00% 2 0 0 11317.5 156.0 173.8
Free + harmonic -5.32 -10.48 -13.14 80.29% 100.00% 100.00% 2 1 0 11219.5 91.6 90.5
Free + harmonic -3.64 -14.00 -13.89 71.70% 100.00% 100.00% 2 0 0 11369.6 143.7 136.6
Free + EM -3.62 -13.95 -13.96 82.77% 100.00% 100.00% 2 0 0 11397.5 142.8 284.9
Free + EM -4.13 -13.82 -13.67 76.55% 100.00% 100.00% 2 0 0 11283.0 306.2 306.2
Free + EM -4.03 -13.45 -13.47 74.56% 99.97% 99.97% 2 0 0 11388.1 305.9 307.9
Free + EM -4.31 -13.77 -13.62 86.68% 99.91% 99.91% 2 0 0 11257.7 152.0 133.5
Free + EM -4.32 -14.00 -14.05 84.55% 100.00% 100.00% 2 0 0 11258.9 303.7 303.8
Free + EM rational -3.45 -13.96 -13.95 77.88% 99.96% 99.93% 2 0 0 11414.9 194.2 195.8
Free + EM rational -3.90 -13.96 -13.91 71.13% 100.00% 100.00% 2 0 0 11340.0 199.0 199.0
Free + EM rational -4.12 -13.97 -13.90 72.78% 100.00% 100.00% 2 0 0 11330.7 198.8 198.8
Free + EM rational -4.02 -14.07 -14.00 77.92% 100.00% 100.00% 2 0 0 11323.5 197.8 197.8
Free + EM rational -4.83 -13.87 -13.86 91.14% 100.00% 100.00% 2 0 0 11247.1 10.3 13.9
Free + gravity + harmonic -4.08 -14.03 -13.95 60.08% 100.00% 100.00% 3 0 0 11269.0 191.8 191.9
Free + gravity + harmonic -4.31 -14.02 -13.66 63.01% 100.00% 100.00% 3 0 0 11334.2 170.4 83.1
Free + gravity + harmonic -4.01 -14.01 -13.99 67.48% 100.00% 100.00% 3 0 0 11351.0 168.7 198.9
Free + gravity + harmonic -3.64 -13.97 -13.88 60.02% 99.97% 99.93% 3 0 0 11374.6 225.7 225.7
Free + gravity + harmonic -4.11 -7.42 -7.43 51.63% 100.00% 99.97% 3 1 1 11313.7 193.5 179.2
Free + gravity + EM -3.79 -13.93 -13.47 57.89% 100.00% 100.00% 3 0 0 11334.0 323.9 346.8
Free + gravity + EM -4.18 -14.00 -14.00 77.16% 100.00% 100.00% 3 1 1 11301.0 277.9 96.2
Free + gravity + EM -3.38 -13.58 -13.87 53.33% 100.00% 99.96% 3 0 0 11381.4 360.4 364.0
Free + gravity + EM -3.46 -13.87 -13.89 49.08% 100.00% 100.00% 3 0 0 11370.1 354.0 350.4
Free + gravity + EM -3.54 -13.69 -13.83 51.28% 100.00% 100.00% 3 0 0 11370.3 331.1 320.7
Free + harmonic + EM -3.87 -13.82 -13.55 67.27% 100.00% 100.00% 3 0 0 11404.0 267.1 275.4
Free + harmonic + EM -3.69 -13.87 -10.93 56.02% 99.97% 99.94% 3 0 0 11413.4 468.5 464.9
Free + harmonic + EM -4.06 -13.39 -13.56 70.87% 100.00% 100.00% 3 0 0 11340.0 452.3 452.3
Free + harmonic + EM -3.46 -13.94 -10.51 59.02% 99.97% 99.93% 3 0 0 11416.0 475.5 471.9
Free + harmonic + EM -3.70 -13.75 -13.82 61.67% 100.00% 100.00% 3 0 0 11354.9 466.8 466.8
Free + gravity + harmonic + EM -3.76 -13.82 -9.48 27.93% 100.00% 99.94% 4 0 0 11358.8 526.9 530.4
Free + gravity + harmonic + EM -3.74 -13.00 -13.18 40.80% 100.00% 99.97% 4 1 1 11284.8 418.5 389.1
Free + gravity + harmonic + EM -4.09 -13.97 -13.75 35.69% 100.00% 100.00% 4 0 0 11297.4 504.6 504.6
Free + gravity + harmonic + EM -3.63 -13.80 -9.99 31.61% 100.00% 99.97% 4 0 0 11407.4 526.3 526.2
Free + gravity + harmonic + EM -3.51 -6.37 -13.52 32.97% 100.00% 100.00% 4 0 0 11445.8 527.4 527.5
Median -3.89 -13.95 -13.88 67.56% 100.00% 100.00% 2.5 0.00 0.00 11338.7 198.9 198.9
Mean -3.94 -13.44 -13.29 65.51% 99.99% 99.99% 2.6 0.10 0.07 11337.9 253.7 252.9

TABLE III: Results for each of our first 40 mystery world benchmarks, as described in the text. Each number is the best out
of ten trials with random initializations (using seeds 0, 30, 60, 90, 120, 150, 180, 210, 240, 270), and refers to big domains only.
Based on the “Unsolved domain” column, we count out of 40 worlds what’s the percentage Baseline, Newborn and AI Physicist
completely solve (has unsolved domain of 0), which goes to the “Fraction of worlds solved” row in Table II.

of 0.05, and the algorithms’ task is to predict the future
(yt+1) based on the past (xt ≡ yt; history length T = 1),
and simultaneously discover the two domains and their
different EOMs unsupervised.

In this experiment, we implement the Baseline and New-
born both as 6-layer neural net during DDAC. For the
Newborn, each hidden layer has 160 neurons with hy-
perbolic tangent (tanh) activation, and for the Baseline,
each hidden layer has 320 neurons with tanh activation
for a fair comparison. For the Newborn, the optional
AddTheories(T , D) (step s9 in Alg. 2) is turned off to
prevent unlimited adding of theories. The initial number
M of theories for Newborn is set to M = 2 and M = 3,
each run with 10 instances with random initialization.



16

Epochs to 10−2 Epochs to 10−4 Epochs to 10−6 Epochs to 10−8

Regions Base- New- AI- Base- New- AI Base- New- AI Base- New- AI
line born phys line born physi line born phys line born phys

Free+gravity 100 85 85 8440 120 120 ∞ 4175 3625 ∞ 6315 4890
Free+gravity 100 70 10 4680 190 35 ∞ 2900 4650 ∞ 2995 6500
Free+gravity 85 100 15 ∞ 135 30 ∞ 8205 3815 ∞ 9620 6455
Free+gravity 95 75 20 7495 140 25 ∞ 6735 1785 ∞ 8040 2860
Free+gravity 110 75 0 1770 295 35 ∞ 3740 3240 ∞ 7030 3460
Free + harmonic 80 75 20 ∞ 145 25 ∞ 2725 4050 ∞ 2830 6145
Free + harmonic 85 75 20 ∞ 80 25 ∞ 7965 1690 ∞ 10000 3400
Free + harmonic 95 75 30 ∞ 110 30 ∞ 1805 3895 ∞ 1855 3900
Free + harmonic 25 20 5 1285 460 10 ∞ 5390 1060 ∞ 7225 6385
Free + harmonic 80 95 5 ∞ 110 20 ∞ 4380 3300 ∞ 4800 4035
Free + EM 90 85 20 ∞ 1190 115 ∞ 6305 3380 ∞ 6590 3435
Free + EM 125 120 0 6240 885 70 ∞ 7310 1865 ∞ 7565 1865
Free + EM 115 115 15 15260 600 70 ∞ 2430 1225 ∞ 2845 4435
Free + EM 145 90 0 6650 140 0 ∞ 3000 5205 ∞ 4530 8735
Free + EM 80 80 10 965 200 25 ∞ 4635 1970 ∞ 4690 2870
Free + EM rational 80 75 0 ∞ 580 70 ∞ 5415 4150 ∞ 5445 4175
Free + EM rational 100 100 10 ∞ 460 45 ∞ 2560 965 ∞ 2575 5760
Free + EM rational 140 95 10 11050 455 65 ∞ 1960 1150 ∞ 6295 4005
Free + EM rational 120 100 5 13315 325 175 ∞ 3970 1290 ∞ 4335 3560
Free + EM rational 35 30 35 1155 335 35 ∞ 3245 2130 ∞ 5115 5610
Free + gravity + harmonic 150 75 25 9085 130 30 ∞ 3870 6145 ∞ 5555 6185
Free + gravity + harmonic 145 90 5 6915 140 25 ∞ 4525 3720 ∞ 10275 4430
Free + gravity + harmonic 105 100 15 6925 155 40 ∞ 6665 6560 ∞ 8915 6845
Free + gravity + harmonic 95 95 5 ∞ 120 30 ∞ 5790 10915 ∞ 18450 13125
Free + gravity + harmonic 135 95 15 7970 190 45 ∞ 13125 7045 ∞ ∞ ∞
Free + gravity + EM 130 100 20 ∞ 575 40 ∞ 3215 5095 ∞ 3215 5100
Free + gravity + EM 125 110 15 5650 160 30 ∞ 6085 4720 ∞ 8025 4980
Free + gravity + EM 80 65 15 ∞ 630 120 ∞ 4100 6250 ∞ 4100 6570
Free + gravity + EM 80 75 5 ∞ 90 45 ∞ 5910 5815 ∞ 7295 6090
Free + gravity + EM 80 85 20 ∞ 1380 465 ∞ 2390 11425 ∞ 7450 11510
Free + harmonic + EM 85 75 25 ∞ 600 150 ∞ 3775 4525 ∞ 4675 5070
Free + harmonic + EM 85 90 25 ∞ 1245 200 ∞ 6225 2340 ∞ 6390 3180
Free + harmonic + EM 115 85 15 16600 190 35 ∞ 6035 1515 ∞ 10065 2110
Free + harmonic + EM 80 70 35 ∞ 720 195 ∞ 6990 3895 ∞ 6995 6115
Free + harmonic + EM 85 65 10 ∞ 985 165 ∞ 5660 1670 ∞ 5820 1820
Free + gravity + harmonic + EM 90 75 0 ∞ 540 255 ∞ 8320 7390 ∞ 9770 7590
Free + gravity + harmonic + EM 95 80 15 ∞ 1265 635 ∞ 6520 6365 ∞ 8475 6475
Free + gravity + harmonic + EM 130 85 10 8620 575 105 ∞ 6320 4035 ∞ 9705 7685
Free + gravity + harmonic + EM 75 80 0 ∞ 815 425 ∞ 7575 8405 ∞ 10440 8620
Free + gravity + harmonic + EM 80 65 20 ∞ 735 280 ∞ 6715 4555 ∞ 12495 8495
Median 95 83 15 ∞ 330 45 ∞ 5403 3895 ∞ 6590 5100
Mean 98 82 15 ∞ 455 109 ∞ 5217 4171 ∞ 6892 5499

TABLE IV: Same as previous table, but showing number of training epochs required to reach various MSE prediction accuracies.
We record the metrics every 5 epochs, so all the epochs are multiples of 5. Note that the AI Physicist has superceded 10−2 MSE
already by 0 epochs for some environments, showing that thanks to the lifelong learning strategy which proposes previously
learned theories in novel environments, reasonably good predictions can sometimes be achieved even without gradient descent
training.
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FIG. 7: In this mystery, a charged double pendulum moves
through two different electric fields E1 and E2, with a domain
boundary corresponding to cos θ1+cos θ2 = 1.05 (the approxi-
mately round region above left, where the lower charge crosses
the E-field boundary). The color of each dot represents the
domain into which it is classified by a Newborn agent, and its
area represents the description length of the error with which
its position is predicted, for a precision floor ε ≈ 0.006. In this
world, the Newborn agent has a domain prediction accuracy
of 96.5%.
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